
Chapter 5

Amplitude Modulation

So far we have developed basic signal and system representation techniques which we will now

apply to the analysis of various analog communication systems. In particular, we will study:

• Amplitude modulation (AM) and its variants;

• Angle modulation including Frequency modulation (FM) and Phase modulation (PM).

Let m(t) be a baseband message signal that carries the information that we would like to trans-

mit in an efficient and reliable manner. If we assume that m(t) is band-limited to B-Hz, then its

transmission in its baseband format requires a transmission bandwidth of B-Hz. In this chapter we

will address the question of transmitting m(t) over a bandpass communication channel. Transmis-

sion over a bandpass communications channel requires a shifting the spectrum of m(t) to higher

frequencies compatible with the characteristics of the communication channel. At the receiver we

reverse this process to recover the message signal from the received waveform.

Before we proceed to fully formulate this problem let us remind ourselves why we need to

shift the spectrum of m(t) to a higher frequencies for transmission. In Section 3.9 we stated

that the design of practical, economically implementable bandpass systems support transmission

bandwidths that are within 1–10% of their center frequencies. Furthermore, we need to devise

a mechanism that will allow multiple signals to share the same communication channel; one of

the most commonly used methods to achieve this objective is frequency-division multiplexing

(FDM). In its most basic form, FDM requires that message signals to be transmitted occupy non-

overlapping frequency bands; hence, we need to be able to shift the spectra of these message

signals to different frequency bands. In addition, the channel loss characteristics, availability of

channel bandwidth, constraints on physical size of the equipment (e.g., antenna size, packaging

dimensions, etc.) must also be taken into consideration.

In this chapter we will first formulate a general signal processing framework for the signal

processing operation modulation. We will then discuss amplitude modulation and amplitude

demodulation techniques and their variants. Chapter ?? will discuss phase and frequency mod-

ulation/demodulation techniques.

Definition 5.1. The process by which some characteristic of a carrier signal signal is varied in

accordance with a modulating signal is called modulation.
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64 CHAPTER 5. AMPLITUDE MODULATION

5.1 Modulation

Let:

m(t) = modulating signal;

c(t) = carrier signal;

ϕ(t) = modulated signal.

The modulating signal m(t) is the message signal which carries the information, e.g. voice, image,

data, video, etc., that we want to transmit. Under the assumption that c(t) is a sinusoidal signal (the
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Figure 5.1: The modulation process.

most common form of a carrier signal), the modulated signal ϕ(t) can be expressed in a generic

form as:

ϕ(t) = a(t) cos θ(t), (5.1)

where a(t) is the (possibly) time-varying amplitude and θ(t) is the (possibly) time-varying phase of

the modulated signal. Observe that ϕ(t) represents a rotating phasor of time-varying amplitude—

its instantaneous amplitude is determined by a(t)—and generalized angle θ(t). The instantaneous

frequency fi(t) of the modulated signal ϕ(t) can be calculated as:

fi(t) =
1

2π

d

dt
θ(t). (5.2)

An unmodulated carrier signal will have:

a(t) = Ac, (5.3a)

θ(t) = 2πfct + θ0, (5.3b)

where Ac is the unmodulated carrier amplitude, θ0 is the arbitrary initial phase term (which we

can assume θ0 = 0 without loss of generality) and fc is the carrier frequency. Observe that for

an unmodulated carrier the signal amplitude will be constant and independent of m(t) and the

generalized angle term will also be independent from the modulating signal m(t).

Different modulation schemes will alter different parts of ϕ(t): amplitude modulation will

render a(t) to be a function of m(t) whereas the phase and frequency modulation will render θ(t)
to be a function of m(t). In particular, we can formulate the amplitude, phase and frequency

modulation schemes as follows:
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Amplitude Modulation (AM): For this modulation scheme we have:

a(t) = g
[
m(t)

]
; (5.4a)

θ(t) = independent of m(t); (5.4b)

for some function g[ . ]. Observe that in the AM case the information contained in m(t) is

embedded in the time-varying amplitude ϕ(t).

Frequency Modulation (FM): For the FM case we have:

a(t) = constant and independent of m(t); (5.5a)

fi(t) = fc +Kfm(t). (5.5b)

θ(t) = 2π

∫ t

0

fi(λ)dλ;

= 2πfct + 2πKf

∫ t

0

m(λ)dλ+ θ0. (5.5c)

where Kf is the frequency sensitivity parameter. For FM signals the amplitude of ϕ(t) is

constant whereas the information contained in m(t) is embedded in its instantaneous fre-

quency fi(t).

Phase Modulation (PM): For the PM case we have

a(t) = constant and independent of m(t); (5.6a)

θ(t) = 2πfct + 2πKpm(t) + θ0; (5.6b)

fi(t) =
1

2π

d

dt
θ(t);

= fc +Kp
d

dt
m(t). (5.6c)

where Kp is the phase sensitivity parameter. For PM signals the amplitude ofϕ(t) is constant

and the the information contained in m(t) is embedded in its generalized phase θ(t).

Observe that we can consider PM as a special case of FM or conversely FM as a special case of

PM. We will further study these two important angle modulation techniques in Chapter ??.

Let us consider the modulated waveform ϕ(t) with spectrum Φ(f). We will frequently refer to

and/or differentiate modulation schemes based on:

• Carrier Term: The modulated waveform ϕ(t) may or may not include a separate carrier

term. If a separate carrier term is present, the spectrum of ϕ(t) shows line spectrum compo-

nents at ±fc where fc is the carrier frequency.

• Lower Side-Band: This terms refers to frequency components in Φ(f) for |f | < fc. De-

pending on the modulation scheme the lower side-band may or may not be present.
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• Upper Side-Band: This terms refers to frequency components in Φ(f) for |f | > fc. De-

pending on the modulation scheme the upper side-band may or may not be present.

Figure 5.2 shows these components as part of the spectrum of a typical modulated waveform.
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Figure 5.2: Elements of the spectrum of a modulated waveform.

5.2 Double Sideband Amplitude Modulation

Let us consider the simplest and the most intuitive amplitude modulation case. Let m(t) be the

baseband message/modulating signal as before, band-limited to B-Hz, and let the carrier be a

sinusoid with amplitude Ac and carrier frequency fc:

c(t) = Ac cos 2πfct, (5.7)

such that

ϕDSB-SC(t) = Acm(t) cos 2πfct, (5.8)

with fc � B. It then follows that the spectrum of m(t) consists of amplitude-scaled and frequency-

shifted versions of M(f):

ΦDSB-SC(f) =
Ac

2

[
M(f − fc) +M(f + fc)

]
. (5.9)

Figure 5.3 displays sample waveforms and their respective spectra for the message, the carrier and

the modulated signal. We use the term double sideband suppressed carrier (DSB-SC) amplitude

modulation to refer to this modulation scheme—double sideband as both sidebands are present in

ΦDSB-SC(f) and suppressed carrier as ϕDSB-SC(t) does not have a separate carrier term indicated

by the lack of line spectral components at ±fc in ΦDSB-SC(f). Upon closed inspection of the

modulated waveform ϕDSB-SC(t) and its respective spectrum ΦDSB-SC(f), we further make the

following observations:

• If the baseband message signal m(t) has the bandwidth B-Hz, then the DSB-SC amplitude

modulated signal ϕDSB-SC(t) requires a transmission bandwidth of 2B-Hz.

• We can use a product modulator to generate ϕDSB-SC(t) = m(t)c(t).
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Figure 5.3: DSB-SC amplitude modulation.

The recovery of the message signal m(t), i.e., the demodulation of ϕDSB-SC(t), can be achieved

in a manner similar to generating ϕDSB-SC(t) from m(t). We observe that ϕDSB-SC(t) has been

generated from m(t) by frequency shifting M(f) by modulating the carrier c(t). Therefore, we

can demodulate ϕDSB-SC(t) by first generating the product:

ϕDSB-SC(t) cosωct = Acm(t) cos2 ωct, (5.10a)

=
Ac

2
m(t) +

Ac

2
m(t) cos 2ωct, (5.10b)

where we used the trigonometric identity cos2 x = (1+cos 2x)/2. The first term on the right-hand

side of Equation (5.10b) is the magnitude-scaled baseband message signal whereas the second term

has a narrowband spectrum centered at ±2fc. Under the assumption that fc � B we can recover

m(t) by lowpass filtering ϕDSB-SC(t) cosωct. Figure 5.5 depicts the block of the modulator used
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Figure 5.4: Spectrum of ϕDSB-SC(t) cosωct and the recovery of m(t).

to generate a DSB-SC amplitude modulated signal and the corresponding demodulator used to re-
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cover the message signal. A closer look at the time-domain waveforms generated at various points

ϕ(t)

cos 2πfct

m(t) ���

������
�����������	


��������

�������

�����������

�

K
′m(t)

cos 2πfct

������
�����������


�

Figure 5.5: Generation and demodulation of DSB-SC amplitude modulated signals.

within the demodulator allow us to have abetter understanding of the operational characteristics of

the demodulator.
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Figure 5.6: Time-domain waveforms at the demodulator.

5.2.1 Coherent Detection

Proper demodulation of DSB-SC amplitude modulated signals as presented in Equation (5.10)

requires that the local oscillators at the modulator and the demodulator are synchronized, i.e.,

both oscillators should generate sinusoids with identical frequencies that are phase coherent: if
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the output of the local oscillator at the modulator is cos(2πf1t + φ1) and the output of the local

oscillator at the demodulator is cos(2πf2t+ φ2), then f1 = f2 = fc and φ1 = φ2.

To illustrate the significance of synchronization, let ϕDSB-SC(t) = Acm(t) cos 2πfct and let ld(t)
be the sinusoid generated by the local oscillator in the demodulator:

ld(t) = cos
(
2π(fc +Δf)t+ φ0

)
. (5.11)

Δf represents deviation from the carrier frequency and φ0 represents phase difference between

the modulator and the demodulator. The demodulator operates by first multiplying the received

waveform ϕDSB-SC(t) with the output of local oscillator. This operation generates the signal:

ϕDSB-SC(t)ld(t) = Ac m(t) cos
(
2πfct

)
cos

(
2π(fc +Δf)t+ φ0

)
, (5.12a)

=
Ac

2
m(t) cos

(
2πΔft+ φ0

)
+

Ac

2
m(t) cos

(
2π(2fc +Δf)t + φ0

)
. (5.12b)

We assume that the mismatch between the local oscillators in the modulator and the demodulator

is small, i.e., Δf � fc. Therefore, the spectrum of the second term in Equation (5.12b) will be

centered on ±2fc and will be filtered out by the lowpass filter in the demodulator such that the

lowpass filter output equals:

y(t) =
Ac

2
m(t) cos

(
2πΔft+ φ0

)
. (5.13)

Thus, y(t) oscillates at the slow rate Δf which is due to the frequency mismatch between the two

local oscillators. We can safely assume Δf = 0 by arguing that we have full knowledge of the

carrier frequency of the signal that we want to demodulate and that modern oscillators can be tuned

very precisely to any desired frequency. Under the Δf = 0 assumption we can express the output

of the demodulator becomes:

y(t) =
Ac

2
m(t) cosφ0. (5.14)

If we are lucky and the local oscillators are perfectly synchronized that is φ0 = 0, then y(t) =
K ′m(t)—the constant K ′ takes into account not only the term Ac/2 in Equation (5.14), but also

any further magnitude changes the signal may experience during transmission and/or processing.

The worst case scenario occurs when φ0 = π/2 radians such that cosπ/2 = 0 and therefore

y(t) = 0. Other values for φ0 will result in varying degrees of attenuation or even phase reversal at

the demodulator output. Hence, we conclude that successful demodulation of DSB-SC amplitude

modulated signals requires accurate synchronization of the two local oscillators. We will use the

term synchronous detection or coherent detection to refer to signal demodulation where the local

oscillator in the demodulator is synchronized with the local oscillator used at the modulator.

5.3 Generation of AM Signals

In this section we we will introduce and briefly discuss some of the most prominent methods for

generating AM signals.
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5.3.1 Non-linear Modulator

Consider the non-linear device described by the input-output relation:

[output] = a[input] + b[input]2, (5.15)

where a, b ∈ �. Figure 5.7 shows how we can use this non-linear device together with an appropri-

ately designed bandpass filter to generate a DSC-SC signal. To show that the output of this system
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Figure 5.7: AM signal generation using non-linear modulator.

indeed represents a DSC-SC signal we first evaluate z(t) as the signal generated by combining the

outputs of the non-linear devices:

z(t) = a [m(t) + cosωct] + b [m(t) + cosωct]
2

− a [−m(t) + cosωct]− b [−m(t) + cosωct]
2; (5.16a)

= am(t) + a cosωct + bm2(t) + 2bm(t) cosωct + b cos2 ωct

+ am(t)− a cosωct− bm2(t) + 2bm(t) cosωct− b cos2 ωct; (5.16b)

= 2am(t) + 4bm(t) cosωct. (5.16c)

The first term on the right-hand side of Equation (5.16c) is a baseband signal that will be filtered

out by the bandpass filter, whereas the second term represents the DSB-SC signal that we want to

retain. Therefore, the bandpass filter must have its passband centered at fc and have a bandwidth

of 2B-Hz where B is the bandwidth of the baseband message signal m(t).

5.3.2 Switching Modulator

The multiplication operation required for modulation can be replaced by a much simpler opera-

tion, namely switching. Observe that the DSB-SC amplitude modulated signal ϕDSB-SC(t) can be

obtained by multiplying m(t) with any periodic signal with fundamental frequency fc. This was

precisely the same approach we used as part of our discussion of the natural sampling process

in Section 4.5. Let φ(t) be such a periodic waveform; as φ(t) is a periodic waveform it can be

expanded in a complex Fourier series with coefficients {Cn}:

φ(t) =

∞∑
n=−∞

Cne
jnωct
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such that

F[
m(t)φ(t)

]
= M(f) ∗ F[

φ(t)
]
; (5.17a)

= M(f) ∗
∑
n

Cnδ(f − nfc); (5.17b)

=
∑
n

CnM(f − nfc). (5.17c)

Thus the spectrum of the product m(t)φ(t) is the spectrum of the modulating waveform M(f)
shifted to ±fc,±2fc, . . .. If we pass this product through a bandpass filter with bandwidth 2B-

Hz and tuned to fc then the output of the bandpass filter will be the desired DSB-SC amplitude

modulated waveform. Figure 5.9 shows the time-domain signals m(t), w(t) and ϕDSB-SC(t) that
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Figure 5.8: DSB-SC AM signal generation using a switching modulator.
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Figure 5.9: Time-domain waveforms and their spectra encountered in the switching modulator.

There are other AM generation techniques. Please refer to the course reference text for further

information and discussion. We will use the terms mixing/frequency conversion/heterodyning
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interchangeably to refer to the process of multiplication followed by bandpass filtering as demon-

strated in the two AM generation techniques discussed above.

5.4 Amplitude Modulation (AM)

Modulated waveform with suppressed carrier terms require fairly complex circuitry at the receiver

to acquire and maintain phase synchronization which make the receivers expensive to manufacture.

In applications where we have one or few transmitters and a much, much larger number of receivers

(e.g. AM/FM radio broadcasting) it makes economic sense that the receivers are as simple as

possible.

To facilitate simple demodulation we consider the idea of transmitting a separate carrier term in

the same frequency band as a DSB-SC amplitude modulated signal. This approach will adversely

affect the d.c. response of the modulating signal m(t); however, due to the lack of any signifi-

cant d.c. content of typical message signals this will still be an acceptable solution. Let ϕAM(t)
represents the corresponding modulated waveform:

ϕAM(t) = m(t) cosωct + Ac cosωct, (5.18a)

=
[
Ac +m(t)

]
cosωct, (5.18b)

such that the spectrum of the resulting amplitude modulated waveform equals:

ΦAM =
1

2

[
M(f − fc) +M(f + fc)

]
+

Ac

2

[
δ(f − fc) + δ(f + fc)

]
. (5.19)

Figure 5.10 shows that ΦAM(t) includes a separate carrier term in addition to both the lower and

the upper side-bands. Therefore, this signal processing technique can be described as double side-

band, large carrier (DSB-LC) amplitude modulation. However, due to the prevalence of this

technique, as in radio broadcasting, we use the term amplitude modulation (AM) to describe the

technique described in Equation (5.18). Figure 5.11 compares the time-domain waveforms and
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Figure 5.10: Spectrum of an DSB-LC/AM signal.

their respective spectra for DSB-SC and AM signals.
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Figure 5.11: Time-domain waveform and spectrum comparison for DSB-SC and AM signals.

The amplitude and envelope functions are important components of an AM signal that allow the

calculation of key AM signal parameters.

Definition 5.2. The amplitude function A(t) of the AM signal
[
Ac +m(t)

]
cosωct is:

A(t) =
[
Ac +m(t)

]
. (5.20)

Definition 5.3. The envelope function E(t) of the AM signal
[
Ac +m(t)

]
cosωct is:

E(t) =
∣∣Ac +m(t)

∣∣. (5.21)

The use of an envelope detector as an AM demodulator requires that the amplitude function A(t)
remains positive, i.e., A(t) = [Ac +m(t)] ≥ 0, at all times. If this happens to be the case, then the

envelope function equals to the amplitude function: E(t) =
∣∣Ac +m(t)

∣∣ = [Ac +m(t)] = A(t).
Under these conditions an envelope detector together with a DC blocker can easily extract the

modulating signal m(t) from the envelope function E(t). Conversely, if A(t) = [Ac +m(t)] < 0
for some t, then E(t) = envelope will no longer be a scaled and shifted version of the modulating

signal m(t) and [Ac + m(t)] will experience phase reversals at zero crossings. As a result, we

will have to use a synchronous detector similar to the demodulator as in the case with DSB-SC

amplitude modulated signals, eliminating all the inherent advantages of simple demodulation of

AM signals. Figure 5.12 depicts the amplitude and envelope functions of a single-tone modulated

AM signal for different cases.
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Figure 5.12: Amplitude and envelope functions of a modulated waveform.

Let:

mp = max
t
|m(t)|, (5.22)

be the maximum absolute value of the message/modulating signal m(t) which will in turn allow

us to define another key parameter associated with AM signals.

Definition 5.4. The modulation index of an AM signal represented by μ, is defined as:

μ =
mp

Ac

=
maxt |m(t)|

Ac

, (5.23)

where mp is the maximum absolute value of m(t) and Ac is the carrier amplitude.

Definition (5.4) implies that the condition “[Ac +m(t)] ≥ 0 at all times” is equivalent to

0 ≤ μ ≤ 1. (5.24)

If the positive and negative swings of the modulating signal m(t) are equal in magnitude, i.e.,

if |maxtm(t)| = |mintm(t)|, then the definition of modulation index given in Equation (5.23)

is sufficient. However, if m(t) is not symmetric, we need to extend the definition of the modu-

lation index. As a matter of fact, AM broadcasting standards impose separate conditions on the

modulation index based on positive and negative swings of the amplitude function A(t). Let

Amax = max
t

A(t) = max
t

[
Ac +m(t)

]
, (5.25a)

Amin = min
t

A(t) = min
t

[
Ac +m(t)

]
, (5.25b)
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Definition 5.5.

Modulation Index: μ =
Amax − Amin

2Ac
. (5.26a)

Positive Modulation Index: μ+ =
Amax − Ac

Ac
. (5.26b)

Negative Modulation Index: μ− =
Ac − Amin

Ac
. (5.26c)

Observe that if the positive and negative swings of m(t) are equal in magnitude, i.e., if |maxtm(t)|
= |mintm(t)|, then μ = μ+ = μ−. The following examples demonstrate how μ, μ+ and μ− are

related when working with a variety of message signals.

Example 5.1. Consider the single-tone signal message signal m(t) = Am cosωmt which we use

to modulate a carrier and generate the AM signal:

ϕAM(t) =
[
Ac + Am cosωmt

]
cosωct. (5.27)

Assume ωm � ωc. We want to evaluate μ, μ+ and μ− using the definitions provided above, and

then sketch the amplitude function A(t) and the envelope function E(t) for: (i) Am/Ac < 1, (ii)

Am/Ac = 1 and (iii) Am/Ac > 1.

Using the single-tone m(t) we first evaluate the signal parameters:

mp = max
t
|m(t)| = Am, Amax = Ac + Am, Amin = Ac − Am,

such that from Equation (5.23) we calculate:

μ =
mp

Ac
=

Am

Ac
, (5.28)

Equivalently, from Equations (5.26a–5.26c) we have:

μ =
Amax − Amin

2Ac

=
[Ac + Am]− [Ac −Am]

2Ac

=
Am

Ac

, (5.29a)

μ+ =
Amax − Ac

Ac
=

[Ac + Am]− Ac

Ac
=

Am

Ac
, (5.29b)

μ− =
Ac −Amin

Ac

=
Ac − [Ac − Am]

Ac

=
Am

Ac

. (5.29c)

Observe that in this example m(t) is symmetric with respect to the horizontal axis so that the

modulation indices evaluated using Equation (5.23) and Equation (5.26a) are identical, and μ =
μ+ = μ−. Let us now sketch the envelope function for the three cases considered:

• Case (i): Am/Ac < 1. In this case μ = Am/Ac < 1 and E(t) = A(t) = [Ac + Am cosωmt]
resulting in E(t) ∼ m(t). This is precisely how we want the envelope to be.

• Case (ii): Am/Ac = 1. In this “borderline” case μ = Am/Ac = 1 and E(t) = A(t) =
[Ac + Am cosωmt] still follows m(t).
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Figure 5.13: Modulated waveform for μ = Am/Ac < 1.
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Figure 5.14: Modulated waveform for μ = Am/Ac = 1.
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Figure 5.15: Modulated waveform for μ = Am/Ac > 1.

• Case (iii): Am/Ac > 1. In this “over-modulation” case μ = Am/Ac > 1 and E(t) = |Ac +
Am cosωmt| �= A(t) such that E(t) �∼ m(t) resulting in envelope distortion.

Let us also determine the spectrum of the AM signal in this single-tone modulation example. Using

the formulation of ϕAM(t) given in Equation (5.27) we can express ΦAM(f) using the frequency

shifting/modulation property:

ΦAM(f) =
1

2

[
X(f − fc) +X(f + fc)

]
, (5.30)

where x(t) = Ac + Am cosωmt, with the corresponding Fourier transform X(f):

X(f) = Ac δ(f) +
Am

2

[
δ(f − fm) + δ(f + fm)

]
. (5.31)
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Substituting Equation (5.34) in Equation (5.30) we obtain:

ΦAM(f) =
Ac

2

[
δ(f − fc) + δ(f + fc)

]

+
Am

4

[
δ
(
f − (fc + fm)

)
+ δ

(
f − (fc − fm)

) ]

+
Am

4

[
δ
(
f + (fc − fm)

)
+ δ

(
f + (fc + fm)

) ]
. (5.32)

Figure 5.16 shows the spectrum of the AM signal. Observe that ΦAM(f) includes all three compo-

nents that are part of an AM signal: the lower side-band (frequency components at ±(fc − fm)),
the upper side-band (frequency components at ±(fc + fm)) and the carrier (frequency compo-

nents at ±fc). As an alternate method, we can determine the spectrum of the AM signal by first

�
−fc − fm

−fc −fc + fm fc − fm
fc fc + fm

Am/4

Ac/2
ΦAM(f)

Figure 5.16: ΦAM(f) resulting from single-tone amplitude modulation.

re-formulating ϕAM(t) using trigonometric identities:

ϕAM(t) = Ac cosωct+ Am cosωmt cosωct, (5.33a)

= Ac cosωct+
Am

2
cos(ωc + ωm)t +

Am

2
cos(ωc − ωm)t (5.33b)

It is then a straight-forward process to transform the time-domain expression in Equation (5.33b)

using the Fourier transform tables.

Example 5.2. Consider the modulating signal m(t) and the corresponding AM signal ϕAM(t) =
[Ac +m(t)] cosωct:

�

��	

���

����
�

Amin = Ac − 0.3

Amax = Ac + 0.8
m(t) ϕAM(t)
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We want to determine the modulation indices using the various definitions provided. Using Equa-

tion (5.25) we first determine

Amax = Ac + 0.8, and Amin = Ac − 0.3,

which in turn allow us to evaluate the modulation indices as defined Equations (5.26a–5.26c):

μ =
Amax −Amin

2Ac
=

0.55

Ac
,

μ+ =
Amax −Ac

Ac
=

0.8

Ac
,

μ− =
Ac − Amin

Ac
=

0.3

Ac
.

On the other hand if we were to use the modulation index as defined in Equation (5.23), we obtain:

μ =
mp

Ac
=

0.8

Ac
,

where mp = maxt |m(t)| = 0.8.

Observe that m(t) is not symmetric in the sense that its maximum equals 0.8 whereas its minimum

is -0.3. Therefore, the values of the modulation index μ calculated using Equation (5.23) and

Equation (5.26a) differ. The modulation index from Equation (5.23) uses μ = max{μ+, μ−}
whereas the modulation index from Equation (5.26a) uses μ = average{μ+, μ−}.

To demonstrate how the shape of the modulating waveform affects the values of the modulation

indices, let us now consider n(t) as the new modulating signal used to generate the AM signal

ϕAM(t) = [Ac + n(t)] cosωct. From n(t) we first determine Amax = Ac + 0.1, Amin = Ac − 0.7

�
n(t)

�

and np = maxt |n(t)| = 0.7. From Equations (5.26a–5.26c) we have:

μ =
Amax − Amin

2Ac

=
0.4

Ac

,

μ+ =
Amax − Ac

Ac

=
0.1

Ac

,

μ− =
Ac − Amin

Ac

=
0.7

Ac

,

and from Equation (5.23):

μ =
np

Ac
=

0.7

Ac
.
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As in the previous case n(t) is not symmetric with its maximum being equal to 0.1 and its min-

imum at -0.7. As before, values of the modulation index μ calculated using different equations

differ. In particular, the modulation index from Equation (5.23) yields the result μ = 0.7/Ac =
max{μ+, μ−} whereas Equation (5.26a) results in uses μ = 0.4/Ac = average{μ+, μ−}.

5.4.1 Sideband and Carrier Power

We developed the DSB-LC/AM technique by adding a separate carrier term to be transmitted

within the same frequency band as the corresponding DSB-SC signal. Our main objective has

been the development of a new amplitude modulation scheme that would allow demodulation using

simple, inexpensive signal processing operations. Indeed, the presence of the carrier term within

the AM signal eliminates the need for coherent detection; instead we will use an envelope detector

which we will introduce and analyze in Section 5.4.3. In order to have a better appreciation of the

effects of adding the carrier term we will now turn our attention to the calculation of the power of

the AM signal and in particular to its constituent parts.

Let us consider the AM signal ϕAM(t) generated by the baseband message/modulating signal

m(t) bandlimited to Bm-Hz. We express ϕAM(t) by separating the carrier and sideband terms:

ϕAM(t) = Ac cosωct︸ ︷︷ ︸
carrier

+m(t) cosωct︸ ︷︷ ︸
sidebands

. (5.34)

Let g(t) represent the time average of the waveform g(t) and let Px be the power delivered by the

signal x(t) across the load R:

Px =
x2(t)

R
. (5.35)

We now want to compute the power of the AM signal Pϕ and express it in terms of the carrier

power Pc and the sideband power Ps. From the definition of the AM signal given in Equation

(5.34) and under the normalization assumption R = 1-Ω we write:

Pϕ = A2
c cos

2 ωct+ 2Acm(t) cos2 ωct+m2(t) cos2 ωct (5.36)

We simply the above expression for Pϕ we first recognize that m(t) changes slowly with respect

to the carrier term cosωct. This observation follows from the assumption fc � Bm. Furthermore,

we assume that m(t) = 0 since the lack of d.c. content in m(t) is a pre-condition for generating

AM signals. It then follows:

• A2
c cos

2 ωct = A2
c/2,

• 2Ac m(t) cos2 ωct = 2Ac m(t) cos2 ωct = 0,

• m2(t) cos2 ωct = m2(t) cos2 ωct = m2(t)/2,

where we used the assumption fc � Bm to separate the time averaging operations involving m(t)
and the carrier term. We further define:

Pc =
A2

c

2
and Ps =

m2(t)

2
, (5.37)
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such that the total power in the AM signal can be expressed as:

Pϕ = Pc + Ps. (5.38)

In an AM signal, the carrier term does not carry any information. Hence, any power used to

transmit the carrier is wasted. It is the sidebands that are a function of the message signal m(t)
and therefore our objective will be the maximization of the sideband power in order to enhance the

efficiency of transmitting the message signal m(t) in amplitude modulated format. We define η as

the power efficiency:

η =
useful power

total power
=

Ps

Pϕ
=

Ps

Pc + Ps
. (5.39)

It is instructive to further investigate the power efficiency of an AM signal in the case of single-

tone modulation. As before, let m(t) = Am cosωmt with fc � fm such that the modulation

index μ = Am/Ac (see Example 5.1). Rewriting the message signal amplitude as Am = μAc we

calculate the sideband power:

Ps =
m2(t)

2
=

μ2A2
c

4
. (5.40)

The resulting power efficiency equals:

η =
Ps

Pc + Ps
=

μ2A2
c/4

A2
c/2 + μ2A2

c/4
=

μ2

2 + μ2
. (5.41)

A closer inspection of the power efficiency as a function of modulation index reveals a mono-

tonically increasing function of μ. This result is expected as the sideband power, i.e., the useful

power within an AM signal, as expressed in Equation (5.40), increases with increasing modulation

index. However, for AM signals the modulation index is constrained by the condition 0 ≤ μ ≤ 1
which ensures that the envelope of the AM signal remains undistorted. Therefore, for single-tone

modulation the maximum power efficiency is achieved at μ = 1:

ηmax =
μ2

2 + μ2

∣∣∣∣∣
μ=1

=
1

3
. (5.42)

We conclude that in an AM signal no more than 33% of the total signal power is used to trans-

mit the message itself; the remaining power is used to transmit the carrier. This result stands in

stark contrast with the power efficiency that can be achieved with a DSB-SC amplitude modulated

signal. Furthermore, the 33% power efficiency is achieved only with single-tone modulation, i.e.,

a test signal; real-life modulating signals such as speech or music, are dynamic in nature and the

signal amplitude changes considerably over the duration of the program, resulting in reduced μ and

therefore in lower power efficiency. The low power efficiency of AM signals is its main drawback;

it is a price we pay in order to simplify the demodulation process.

5.4.2 AM Broadcasting Standards

The following list provides some of the key AM radio broadcasting standards. These standards are

formulated, published and enforced by regulatory agencies in each country/region; they include:



5.4. AMPLITUDE MODULATION (AM) 81

CRTC, the Canadian Radio-Television and Telecommunications Commission in Canada, FCC,

the Federal Communications Commission in the USA and EBU, the European Broadcasting Union

in the European Union and affiliated countries.

• Assigned carrier frequency: 540–1600 kHz in 10 kHz increments.

• Channel bandwidth: 10 kHz.

• Carrier frequency stability: ±20 Hz.

• Percentage Modulation: maintain 85–95% modulation; maximum modulation values al-

lowed: μ = 100%, μ+ = 125% and μ− = 100%.

• Audio frequency response: 100 Hz–5 kHz, ±2 dB with 0 dB at 1 kHz.

• Harmonic distortion: for μ < 85% harmonic distortion should remain below 5%, for

μ ∈ [85%, 95%] harmonic distortion should remain below 7.5%.

• Noise and hum: 45% below 100% in the 20–30 Hz range.

• Maximum licensed power: 50 kW.

Broadcasters use limiting and compression on the program material to reduce the dynamic

range of the signal (this is true both for AM and FM broadcasting) so that the transmitter can

operate at close to the maximum allowed modulation index value most of the time and thus achieve

higher power efficiency.

5.4.3 Generation of AM Signals

We can apply the DSB-SC generation techniques (see Section 5.3) to [Ac +m(t)] instead of m(t).
Howeevr, since we do not need to suppress the carrier as in the case of DSB-SC signals, we

no longer require balanced modulators (balanced with respect to the carrier). This simplifies the

modulator structure considerably. Please refer to the course reference text for further information.

5.4.4 Demodulation of AM Signals

While it is possible to demodulate an AM signal using a coherent detector with a locally generated

carrier as with DSB-SC signals, such an approach would defy the purpose of transmitting a large

carrier as part of the AM signal. Therefore, we will not pursue this approach any further.

Rectifier Detector: Please see the course reference text for a description of the rectifier detector

and for a detailed analysis of how it can be used to demodulate AM signals.

Envelope Detector: The envelope detector is a simple but effective device well-suited to the de-

modulation of narrowband AM signals with μ ≤ 1. Ideally, the output of the envelope

detector follows E(t), the envelope of ϕAM(t). To understand how the envelope detector

functions, let us consider the following cases:
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RLϕAM(t) vo(t)

Rs

Figure 5.17: The envelope detector (RL : load resistance, Rs : source resistance).

Charging capacitor: During the positive cycles, i.e., when ϕAM(t) > 0 and when the input

voltage exceeds the voltage across the capacitor C, the diode is forward biased and

conducts, which results in the capacitor C charging quickly to the maximum value of

ϕAM(t).

Discharging capacitor: During the negative cycles, i.e., when ϕAM(t) < 0 and when the

the capacitor voltage exceeds the input voltage, the the diode is reverse biased and does

not conduct; the capacitor C discharges over RL until the charge cycle.

�

E(t)

vo(t)

ϕAM(t)

� �

��
���	
�
��
�
����	
�

�� ��

Figure 5.18: Charging and discharging of the capacitor in the envelope detector.

Under the assumption that the diode is an ideal device, we calculate the charging time con-

stant of the envelope detector as τC = (Rs + RL)C and the discharging time constant as

τD = RLC. For proper operation of the envelope detector the charging time constant τC must

be small compared to the carrier period 1/fc, i.e., τC � 1/fC so that during the charging

cycles the capacitor can quickly charge to the peak voltage of the input signal.

On the other hand the discharging constant τD must be long enough compared to the carrier

period 1/fc but not so long such that the capacitor will not discharge at the maximum rate of

change of the modulating signal m(t). A good compromise can be expressed as:

1

fc
� τD � 1

Bm
, (5.43)

where Bm is the bandwidth of the modulating signal m(t). Figure 5.19 demonstrates how

the output of the envelope detector may look like when τD is too large or too small.
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� �
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E(t)

ϕAM(t)

vo(t)

���
τD
��
���
�����

Figure 5.19: Envelope detector output: (a) τD too large, (a) τD too small.

In Figure 5.19a the envelope detector cannot follow the envelope E(t) as τD is too large such

that the capacitor in the envelope detector cannot discharge fast enough relative to the rate

of change of the modulating signal m(t). Figure 5.19b shows that if τD is too small then

during the discharge cycles the detector output will quickly decay such that the output of the

envelope detector will exhibit significant ripple which may prove to be difficult to remove

even with additional processing.

Figure 5.18 shows that the output of the envelope detector vo(t) has ripples and also exhibits a

d.c. component which need to be eliminated for the full recovery of the modulating/message

signal m(t). Therefore, we process vo(t) first with a lowpass filter to eliminate ripples fol-

lowed by a d.c. blocking unit. Figure 5.20 presents the complete block diagram of the AM

demodulator based on envelope detection.

ϕAM(t) vo(t) K
′
m(t)

��������	
������
 
�������

�������	
�����


Figure 5.20: AM signal demodulation using envelope detection.

5.5 Quadrature Amplitude Modulation (QAM)

The transmission bandwidth of a DSB amplitude modulated signal, i.e., DSB-SC and AM, is twice

the baseband bandwidth of the modulating/message signal. Quadrature Amplitude Modulation

(QAM) is a technique that allows the transmission of two independent signals without interfering

with each other while occupying the same frequency band, eliminating one of the major disadvan-

tages of DSB amplitude modulation. We also use the term Quadrature Carrier Multiplexing to

describe QAM: multiplexing as both message signals that are part of a QAM signal will be trans-

mitted over the same communication channel, and quadrature carrier as a QAM transmitter uses
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two carriers that are in quadrature with respect to each other, that is two carriers with π/2 phase

difference, e.g. cosωct and sinωct.

We recall from our earlier discussion of coherent detection of DSB-SC signals that if the phase

difference between the local oscillators in the modulator and demodulators equals π/2, then the de-

tector output becomes 0 (see the discussion at the end of Section 5.2.1 on page 69). It is precisely

this idea that we exploit in designing the QAM system. Let m1(t) and m2(t) be two indepen-

dent baseband message signals with Bm-Hz bandwidth. The QAM signal at carrier frequency fc
with fc � Bm is generated by first modulating cosωct with m1(t), sinωct with m2(t) and then

combining the two DSB-SC signals:

ϕQAM(t) = m1(t) cosωct +m2(t) sinωct. (5.44)

As m1(t) and m2(t) are bandlimited to Bm-Hz and both carriers operate at fc, ϕQAM(t) occupies

the frequency band |f ± fc| ≤ Bm resulting in a transmission bandwidth of 2Bm-Hz. Figure

5.21 depicts the generation and demodulation of a QAM signal. The QAM-receiver consists of

sinωct

m1(t)

���

��������	

�������

��	�
���
����

�

K
′
m1(t)

cosωct

−π/2

cosωct

m2(t)

�

−π/2

���
K

′′
m2(t)

	
�����
�����

sinωct

x1(t)

x2(t)

Figure 5.21: QAM modulator and demodulator.

two coherent detectors, the I-Demodulator (I: in-phase) and the Q-Demodulator (Q: quadrature),

operating in parallel. We start our analysis of the demodulator by first considering the signal x1(t)
at the output of the multiplier in the I-Demodulator:

x1(t) = ϕQAM(t) cosωct, (5.45a)

= m1(t) cos
2 ωct+m2(t) cosωct sinωct, (5.45b)

=
1

2
m1(t) +

1

2
m1(t) cos 2ωct+

1

2
m2(t) sin 2ωct. (5.45c)

Observe that the last two terms in Equation (5.45c) are narrowband signals centered at 2fc and

therefore will be eliminated by the lowpass filter with cutoff frequency set at Bm-Hz. Therefore,
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the output of the lowpass filter in the I-Demodulator can be expressed as:

hlpf(t) ∗ x1(t) =
1

2
m1(t), (5.46)

where hlpf(t) is the impulse response of the lowpass filter. Equivalently, we can represent the

output of the lowpass filter as K ′m1(t) to allow any non-unity gain the signal may experience

during the demodulation process. The analysis of the Q-Demodulator follows the same pattern;

the signal x2(t) at the output of the multiplier equals:

x2(t) = ϕQAM(t) sinωct, (5.47a)

= m1(t) cosωct sinωct +m2(t) sin
2 ωct, (5.47b)

=
1

2
m1(t) sin 2ωct +

1

2
m2(t)− 1

2
m2(t) cos 2ωct. (5.47c)

Similarly, the output of the lowpass filter in the Q-Demodulator (which has identical characteristics

to the lowpass filter used in the I-Demodulator) becomes:

hlpf(t) ∗ x2(t) =
1

2
m2(t), (5.48)

or equivalently K ′′m2(t). Demodulation of QAM signals requires phase and frequency synchro-

nization that can be achieved by using synchronous/coherent detectors with carrier acquisition.

There are numerous applications of QAM in signal processing and communications. For exam-

ple, the colour information (the chrominance signal) in broadcast TV is transmitted in quadrature

to the luminance signal. This decision was dictated by the frequency and channel allocations for

TV broadcasting which were established when all TV signals were monochrome. Therefore, the

engineers had to use a modulation scheme that allowed the transmission of the chrominance signal

within the allocated frequency band. Today, the digital version of QAM, where the message signals

m1(t) and m2(t) are digital, forms the foundation of many digital data communication systems.

5.6 Single Sideband Modulation (SSB)

Standard AM and DSB-SC amplitude modulation techniques are wasteful of bandwidth because

they both require transmission bandwidths of 2Bm-Hz where Bm is the bandwidth of the baseband

modulating signal m(t). Doubling of the transmission bandwidth is the result of transmitting both

sidebands, upper and lower sidebands, as part of the modulated waveform.
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Figure 5.22: Spectra of DSB and SSB modulated waveforms.

The upper sideband (USB) and the lower sideband (LSB) signals in a modulated waveform are

uniquely related to each other as they are symmetric with respect f = fc. Therefore, we need to

transmit only one sideband while retaining all the information in m(t). We will use the notation

SSB+ and SSB− to refer to single sideband modulated waveforms which retain only the USB and

the LSB from the double sideband modulated signal, respectively.

5.6.1 Representation of Single Sideband Signals

Let m(t) be a real-valued baseband message signal bandlimited to Bm-Hz. We will use the notation

m+(t) and m−(t) to refer to the single sideband signals generated from m(t). Let M+(f) and

M−(f) be their respective spectra.

Bm−Bm

�
�

Bm−Bm

�
�

M(f)

�
�

M−(f) M+(f)

Figure 5.23: Single sideband spectra M+(f) and M−(f) generated from M(f).
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We observe that m+(t) and m−(t) cannot be real valued signals as their magnitude spectra no

longer exhibit even symmetry, i.e., |M+(f)| �= |M+(−f)| and |M−(f)| �= |M−(−f)|. In order to

have a time-domain formulation of single sideband signals we first observe from Figure 5.23:

M(f) = M+(f) +M−(f), (5.49)

or equivalently

m(t) = m+(t) +m−(t). (5.50)

From the definitions of M+(f) and M−(f) and the conjugate symmetry property1 of the Fourier

transform we can write:

M+(f) = M∗

−(−f). (5.51)

The symmetry property of the single sideband Fourier transform corresponds to the following

relation for the corresponding time signals:

m+(t) = m∗

−(t). (5.52)

In view of our earlier observation that m+(t) and m−(t) cannot be real valued signals and the

symmetry properties stated in Equations (5.51) and (5.52), we assume:

m+(t) =
1

2

[
m(t) + jmh(t)

]
, (5.53a)

m−(t) =
1

2

[
m(t)− jmh(t)

]
, (5.53b)

for some signal mh(t). Clearly, the time-domain waveforms defined in Equation (5.53) satisfies

the symmetry conditions stated in Equations (5.51) and (5.52).

To formulate the relation between the spectra of the single sideband signals obtained from

M(f) we recognize that M+(f) can be expressed as:

M+(f) = M(f) u(f), (5.54a)

= M(f)
[1
2

(
1 + sgn(f)

) ]
, (5.54b)

=
1

2
M(f) +

1

2
M(f)sgn(f), (5.54c)

where u(x) is the unit step function and sgn(x) is the sign function:

sgn(x) =

{
1, if x ≥ 0;

−1, if x < 0.
(5.55)

From Equation (5.53a) we can write:

M+(f) =
1

2
M(f) +

j

2
Mh(f). (5.56)

1 The conjugate symmetry property states that F [x∗(t)] = X∗(−f) where X(f) = F [x(t)].
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By comparing the expression in Equation (5.59) with Equation (5.54c) we can obtain the frequency

domain expression:

Mh(f) = −jM(f)sgn(f) = Hh(f)M(f), (5.57)

where Hh(f) is the Hilbert transformer:

Hh(f) = −jsgn(f) =

{
−j, if f ≥ 0;

+j, if f < 0.
(5.58)

Observe that the Hilbert transformer functions as a wideband π/2-radians phase shifter. Thus,

�

|Hh(f)|

�

arg[Hh(f)]

π/2

−π/2

�

�

Figure 5.24: Magnitude and phase response functions of the Hilbert transformer.

mh(t) as the output of the Hilbert transformer when m(t) is the input, represents a π/2 phase-

shifted version of the modulating signal, i.e., every frequency component in m(t) experiences the

same π/2 phase shift as m(t) is processed by the Hilbert transformer.

Using the results for expressing the single sideband signals both in time and frequency domains,

we can now formulate the single sideband modulated signals with ease. Let ϕSSB+
(t) be the upper

single sideband modulated signal with the corresponding Fourier transform ΦSSB+
(f); similarly

we will use the notation ϕSSB−(t) to represent the lower single sideband modulated signal with

ΦSSB−(f) its Fourier transform. Comparing the shapes of the single sideband spectra in Figure

5.23 with those of the modulated waveforms depicted in Figure 5.22 we write:

ΦSSB+
(f) = M+(f − fc) +M−(f + fc), (5.59a)

ΦSSB−(f) = M−(f − fc) +M+(f + fc). (5.59b)

The corresponding time domain waveforms can be determined by taking the inverse Fourier trans-

form of the expressions given in Equation (5.59). In particular, Equation (5.59b) together with

Equation (5.53) allows us to express ϕSSB+
(t) as:

ϕSSB+
(t) = m+(t)e

jωct +m−(t)e
−jωct, (5.60a)

=
1

2

[
m(t) + jmh(t)

]
ejωct +

1

2

[
m(t)− jmh(t)

]
e−jωct, (5.60b)

= m(t) cosωct−mh(t) sinωct. (5.60c)

Similarly, for the lower sideband modulated signal we obtain the expression:

ϕSSB−(t) = m(t) cosωct +mh(t) sinωct. (5.60d)
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5.6.2 Generation of Single Sideband Signals

Selective Filtering Method

The selective filtering method is the most commonly used technique for generating SSB signals.

m(t) ���

������	
��
��

�

ϕSSB±
(t)

cosωct

Figure 5.25: SSB signal generation using the selective filtering method.

This method first generates the DSB-SC amplitude modulated signal m(t) cosωct, and then filters

out one of its sidebands using a bandpass filter.

Successful implementation of the selective filtering method requires that Bm � fc and the

modulating signal m(t) has little or no low-frequency content, i.e., |M(f)| = 0 for |f | < f1 where

f1 is the low-frequency edge for m(t). Modulating signals used in many practical applications

easily conform to these conditions, e.g. voice-grade speech signals occupy the frequency band

[300, 3400] Hz and therefore has a 300 Hz “frequency hole”.
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�

fc +Bm

�
� fc

�
�

������
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Bm

�
�

�
�

fc +Bm

�
� fc

�
�

Bmf1

fc − f1 fc + f1

|Hbp(f)|

fc −Bm

M
′(f)

Figure 5.26: Generating a SSB+ signal from a DSB-SC signal using the selective filtering method based on

(a) m(t) with low-frequency content and (b) m′(t) with a low-frequency hole.

But why does a modulating signal have to have a ”frequency hole” at low frequencies for the selec-

tive filtering method to work? Figure 5.26 demonstrates SSB+ signal generation from a DSB-SC
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signal using the selective filtering method for two different modulating signals. Case (a): The

modulating signal m(t) with Fourier transform M(f) has no “frequency hole” at low frequen-

cies. The bandpass filter Hbp(f) required to generate the SSB+ signal from the DSB-SC signal

m(t) cosωct is not realizable because the filter’s first stopband [0, fc] Hz is adjacent to its passband

[fc, fc + Bm] with no provision for a transition band. Case (b): The second modulating signal

m′(t) with Fourier transform M ′(f) has the “frequency hole” [0, f1] Hz. As a result the bandpass

filter Hbp(f) that can generate the SSB+ from the DSB-SC signal m′(t) cosωct can operate with

the transition band [fc − f1, fc + f1] and is therefore realizable.

In cases when the carrier frequency fc of the modulated signal is high, we use a multi-stage

approach for the generation of SSB amplitude modulated signals. In the first stage, we generate a

SSB signal from m(t) using a SSB modulator as shown in Figure 5.25; the resulting SSB signal

occupies a frequency band below the desired carrier frequency fc. The second stage uses the SSB

signal generated by the first stage as an input and shifts the SSB signal further up in the frequency

band. This process is repeated until the output of the final stage results in a SSB signal at the

desired carrier frequency fc. A major advantage of the multi-stage approach is the less stringent

requirements on the bandpass filters used in the SSB modulators.

Phase-Shift Method

The time domain expressions we developed in Section 5.6.1 provide an alternate method for the

generation of SSB signals. Under the assumption that we have access to a Hilbert transformer

we can generate SSB signals using the phase-shift method: in this method we first generate the

quadrature modulated waveforms m(t) cosωct and mh(t) sinωct using the message signal m(t)
and its Hilbert transformed version mh(t), we then compute the difference of the quadrature mod-

ulated waveforms for SSB+ or their sum for SSB− as per Equation (5.60):

ϕSSB+
(t) = m(t) cosωct−mh(t) sinωct,

ϕSSB−(t) = m(t) cosωct+mh(t) sinωct.

Figure 5.27 shown the block diagram representation of the phase-shift method.

sinωct

mh(t)

−π/2

cosωct

m(t)

�������
	�
��
�����

�

�

�

�

ϕSSB+
(t)

ϕSSB−
(t)

Figure 5.27: Generating SSB signals using the phase-shift method.
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5.6.3 Demodulation of Single Sideband Signals

The demodulation of SSB signals can be achieved using a coherent detector with an identical

structure as a coherent detector used to demodulate DSB-SC modulated signals. Observe that

cosωct

���

��������	
�������

∼ m(t)

�

ϕSSB±
(t)

Figure 5.28: Demodulation of SSB signals using a coherent detector.

ϕSSB±(t) cosωct = m(t) cos2 ωct∓mh(t) sinωct cosωct, (5.61a)

=
1

2
m(t) +

1

2
m(t) cos 2ωct∓ 1

2
mh(t) sin 2ωct. (5.61b)

The last two terms in the right-hand side of Equation (5.61b) are centered about ±2fc and will

be filtered out by the lowpass filter with passband [0, Bm] Hz which has been designed to extract

the baseband modulating modulating signal m(t). Hence, any coherent demodulation technique

developed for DSB-SC modulated signals can be used with SSB modulated signals as well.

5.7 Vestigial Sideband Modulation (VSB)

Single sideband modulation is a technique suitable for the transmission of signals with a “frequency

hole” in the low frequency content of the modulating signal. On the other hand if the modulating

signal has significant low-frequency energy then single sideband modulation is no longer a viable

technique. For example, video signals have significant low frequency content and therefore do

not allow the use of the bandwidth preserving/minimizing SSB modulation techniques. The vesti-

gial sideband (VSB) modulation technique represents a compromise between the single sideband

and double sideband modulation systems: a VSB modulated signal includes one almost complete

sideband of the modulating waveform together with just a trace or vestige of the other sideband.

5.7.1 Generation of VSB Signals

The selective filtering method discussed in the context of generating SSB modulated signals also

forms the basis for generating VSB modulated waveforms.



92 CHAPTER 5. AMPLITUDE MODULATION

m(t) Hv(f)


��	���������

	

ϕVSB(t)

cosωct

ϕDSB-SC(t)

Figure 5.29: VSB signal generation using filtering.

In the selective filtering method, we first generate a DSB-SC modulated waveform m(t) cosωct
followed by bandpass filtering where the filter is designed to keep only one sideband of the modu-

lated waveform. VSB modulated signals are generated using the same approach: sideband shaping

of a DSB-SC modulated waveforms using an appropriately designed bandpass filter. Figure 5.30

shows the spectra of the signals generated at the VSB-Modulator based on the filtering method.
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Figure 5.30: Spectra of the signals encountered during VSB signal generation based on selective filtering.

The VSB filter Hv(f) has a bandpass characteristics with passband [fc+ fv, fc+ fBm
] where fv is

the frequency parameter that determines the frequency extent of the vestige of the sideband2 that

will be part of the VSB modulated signal. In particular, Hv(f) forces part of the LSB over the

frequency band [fc − fv, fc] to be included in the VSB signal whereas part of the USB over the

2 A VSB modulated waveform may include a vestige of the LSB or USB. The discussion provided in this section

uses a VSB modulated waveform that includes part of the LSB and most of the USB of the DSB modulated waveform.
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frequency band [fc, fc + fv] will be symmetrically shaped. Once we formulate the demodulation

of VSB modulated signals, we will develop constraints that the bandpass filter Hv(f) must satisfy

such the demodulator can properly recover the modulating waveform m(t) even though the VSB

signal ϕVSB(t) does not include a complete sideband.

5.7.2 Demodulation of VSB Signals

The demodulation of VSB modulated signals can be achieved using a coherent detector with a

structure identical to those used to demodulate both the DSB-SC and the SSB modulated wave-

forms as depicted in Figures 5.5 and 5.28, respectively. The lowpass filter in the coherent detector

will have a passband [0, Bm] Hz where Bm is the bandwidth of the modulating signal m(t).

Observe that the first step of coherent detection is to modulate the incoming signal ϕVSB(t)
with the output of the local oscillator 2 cosωct. This operation will generate the signal s(t) =
2ϕVSB(t) cosωct with the spectrum

S(f) = ΦVSB(f − fc) + ΦVSB(f + fc). (5.62)

Figure 5.31 shows the the spectra of the signals generated at the coherent demodulator (this set of

spectra assumes that the baseband modulating waveform m(t) and the resulting VSB modulated

signal ϕVSB(t) are characterized by their spectra shown in Figure 5.30). Clearly applying the signal

�
� fc +Bmfc

ΦVSB(f)

�

�

�

fc − fv−fc

ΦVSB(f − fc)

ΦVSB(f + fc)

2fc−2fc

�

�

� Bm−Bm

−fv fv

S(f) = ΦVSB(f − fc) + ΦVSB(f + fc)

Figure 5.31: Demodulation of VSB modulated waveforms using a coherent detector.
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s(t) to the lowpass filter with passband [0, Bm] Hz that is part of the coherent demodulator will

result in the recovery of m(t) from s(t).

5.7.3 Choosing Hv(f)

From the discussion presented in Section 5.7.1 together with theVSB modulator depicted in Figure

5.29 we can express the spectrum of the VSB modulated signal ϕVSB(t) as:

ΦVSB(f) = K
[
M(f − fc) +M(f + fc)

]
Hv(f), (5.63)

where the constant K incorporates all scaling parameters encountered throughout the signal pro-

cessing in the modulator. Let y(t) be the output of the coherent demodulator and let hlpf(t) be the

impulse response of the lowpass filter. The spectrum of the demodulated signal y(t) = hlpf(t)∗s(t)
is given by the expression:

Y (f) = S(f)Hlpf(f), (5.64a)

=
[
ΦVSB(f − fc) + ΦVSB(f + fc)

]
Hlpf(f), (5.64b)

= K
[ [

M(f − 2fc) +M(f)
]
Hv(f − fc)

+
[
M(f) +M(f + 2fc)

]
Hv(f + fc)

]
Hlpf(f), (5.64c)

= K ′
[
Hv(f − fc) +Hv(f + fc)

]
M(f). (5.64d)

Equation (5.64d) follows from the lowpass filter Hlpf(f) filtering out the narrowband signal spec-

tra, M(f − 2fc)Hv(f − fc) +M(f + 2fc)Hv(f + fc) centered at ±2fc. Thus, the bandpass filter

Hv(f) must satisfy the constraint:

Hv(f − fc) +Hv(f + fc) = constant, −Bm ≤ f ≤ Bm. (5.65)

The constraint given in Equation (5.65) implies that Hv(f) should be symmetric for |f − fc| ≤ fv.

�
�

fcfc − fv fc + fv

Hv(f)
��������

Figure 5.32: Symmetry condition for Hv(f).
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5.7.4 Further Comments on VSB Modulation

In this section we present a few observations and an example to complete our discussion of VSB

modulation technique.

• Earlier we introduced VSB modulation as a compromise between DSB and SSB modulation.

One can further show that

lim
fv→0

ϕVSB(t) = ϕSSB(t) and lim
fv→Bm

ϕVSB(t) = ϕDSB(t),

where fv is the frequency parameter that determines the frequency extent of the vestige of

the sideband that will be part of the VSB modulated signal.

• Let Bm be the transmission bandwidth of the modulating baseband signal m(t) and let

BT be the transmission bandwidth of a signal. Thus, we have BT

[
ϕSSB(t)

]
= Bm and

BT

[
ϕDSB(t)

]
= 2Bm such that

BT

[
ϕSSB(t)

]
< BT

[
ϕVSB(t)

]
< BT

[
ϕDSB(t)

]
.

In practice, a VSB modulated waveform will resull in approximately 25% increase in trans-

mission bandwidth over the baseband or SSB modulated transmission bandwidth of Bm:

BT

[
ϕVSB(t)

] ≈ 1.25BT

[
ϕSSB(t)

]
= 1.25Bm.

• The VSB modulation technique we discussed in this section does not include a separate

carrier and therefore must be demodulated using a coherent detector. It is possible, however,

to create a variant of VSB modulation by adding a carrier that will be transmitted in the same

frequency band as the VSB signal; let VSB+C refer to this modulation scheme. Similarly,

one can also generate a version of SSB modulation which includes a carrier; let SSB+C

be this version of SSB modulation. The presence of the carrier terms both as part of VSB

and the SSB modulated signals allows simplified demodulation using an envelope detector.

However, both SSB+C and VSB+C are notoriously power inefficient, such that the power

efficiency of the modulation schemes which include a carrier are ordered as follows:

ηSSB+C < ηVSB+C < ηAM ≤ 1

3
.

Example 5.3. The best known application of VSB+C modulation is in commercial TV broadcast-

ing. As analog video signals have large bandwidth and significant low-frequency content, VSB

modulation is an obvious choice. Figure 5.33 shows the spectrum of a typical broadcast TV signal

which is a composite signal consisting of a VSB+C video component frequency multiplexed with

a FM-modulated audio signal. The composite TV signal also includes an audio carrier that will

allow simple demodulation of the audio signal.
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Figure 5.33: Spectrum of a typical composite TV signal (fcv : visual carrier, fca : audio carrier such that

fca = fcv + 4.5 MHz).


